LOGICAL EQUIVALENCES Monday, September 24 2012

Lecturer: Dr. Julan HERNADI

September 23, 2012

Lecturer: Dr. Julan HERNADI 3st meeting

Tautology and Contradiction

- Tautology is a compound proposition that is always true, no matter what the truth values of it's underlying propositions.
- Contradiction is a compound proposition that is always false, no matter what the truth values of it's underlying propositions.
- Contigency is a proposition that is neither tautology and contradiction.

Example

Identify which of following sentences are tautology, contradiction, and contigency

1
$$[x > 2] ∧ [x = 2]$$

- I have to go now and my class is taking place now
- $\ \, \bullet \lor \neg p \text{ where } p \text{ is any proposition}$
- $p \land \neg p$ where p is any proposition

Logical Equivalences

Two compound propositions that have the same truth values in all possible cases are called **logically equivalent**. On other words, the proposition p and q are called logically equivalent if biimplicaton p ↔ q is a tautology. Furthermore, the notation p ≡ q or p ⇔ q denotes that p and q are logically equivalent.

Example

Let P be the implication $p \rightarrow q$ and Q be the contraposition $\neg q \rightarrow \neg p$. Prove that $P \equiv Q$.

Proof.

Create a truth table for $p \rightarrow q$ and $\neg q \rightarrow \neg p$, and check the truth values in all cases.

Fact

The logically equivalent is intended for two compound propositions, but the tautoloy is addressed for one compound proposition.

Some Basic Form of Logical Equivalences

- Identity laws : $p \land T \equiv p$ dan $p \lor F \equiv p$ where T and F are TRUE and FALSE proposition, respectively .
- **2** Domination laws : $p \lor T \equiv T$ dan $p \land F \equiv F$.
- 3 Idempotent laws : $p \lor p \equiv p$ dan $p \land p \equiv p$.
- **Oble negation** laws : $\neg(\neg p) \equiv p$.
- **5** Comutative laws : $p \lor q \equiv q \lor p$ dan $p \land q \equiv q \land p$.
- 6 Assosiative laws : $(p \lor q) \lor r \equiv p \lor (q \lor r)$ dan $(p \land q) \land r \equiv p \land (q \land r)$.
- O Distributive laws : $p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$ dan $p \land (q \lor r) \equiv (p \land q) \lor (p \land r).$
- **0** De Morgan's laws : $\neg(p \lor q) \equiv \neg p \land \neg q$ dan $\neg(p \land q) = \neg p \lor \neg q$.
- **2** Absorption laws : $p \lor (p \land q) \equiv p$ dan $p \land (p \lor q) \equiv p$.

These basic logical equivalences can be proven by mean of the truth table.

Example

Prove that $p \rightarrow q$ and $\neg p \lor q$ are logically equivalent.

Proving without Truth Table

Example

Show that $\neg(p \lor (\neg p \land q))$ and $\neg p \land \neg q$ are logically equivalent without using the truth table.

Proof.

Justify which the basic rules are used in the steps

$$\neg (p \lor (\neg p \land q)) \equiv \neg p \land (\neg (\neg p \land q)) [\text{step 1}]$$
$$\equiv \neg p \land (\neg (\neg p) \lor \neg q) [\text{step 2}]$$
$$\equiv \neg p \land (p \lor \neg q) [\text{step 3}]$$
$$\equiv (\neg p \land p) \lor (\neg p \land \neg q) [\text{step 4}]$$
$$\equiv F \lor (\neg p \land \neg q) [\text{step 5}]$$
$$\equiv (\neg p \land \neg q) [\text{step 6}]$$

Example

Prove that $(p \land q)
ightarrow (p \lor q)$ is a tautology by an algebraic derivation.